Advanced Homework 3 - Euler's Number

Due: May 5th

Figure 1: xkcd - "Definition of e"

You'll often see the number e introduced as

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n$$

an expression that comes up in compound interest (and is interesting in its own right). Here we'll take a different approach by focusing on its role in the expontential function, but check out the recommendations section at the end for more.

Exponents & Logs

We usually see e as part of the function e^x , or its inverse $\ln(x) = \log_e(x)$. But why is that so common in calculus? Exponential functions are obviously useful, but when we see them elsewhere they're usually use base 10 or base 2.

For example:

- The Richter scale for earthquakes is base 10 (a magnitude 5 earthquake is $10^5/10^1$ = 10,000 times more powerful than a magnitude 1 earthquake)
- The decibel system for sound is base 10 (a 30 decibel sound is $10^3 = 1,000$ times louder than a decibel 0 sound).
- Octaves in music are base 2 moving up an octave *double* the frequency of a tone.
- Bits measure information is base 2

and the list goes on.

Have you ever wondered why when you get to calculus you never see 10^x or 2^x ?

Everything is e^x and $\ln(x) = \log_e(x)$. In fact, we really only know how to take $\frac{d}{dx}e^x$ and $\frac{d}{dx}\ln(x)$. Do you even know the derivative of $\frac{d}{dx}(2^x)$?

Derivatives

Let's find out.

Think back to when you first learned derivatives. You learned this definition (or something similar):

$$\frac{d}{dx}f = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The derivative of f at some point x is the *slope* of f at x And the slope is "rise over run" (which is pretty much where the notation dy/dx comes from). So we compute the *rise* of f between x and another point x + h (rise = f(x + h) - f(x)) and put it over the *run* (run = (x + h) - x = h). Then we take the limit as we bring x + h closer and closer to x (i.e. $\lim_{h\to 0}$).

The rest of this won't make much sense until you play around with that definition for a little bit, so stop and work through these problems.

You can also reread chapter 4.1 in the textbook for a refresher.

Problems 1/3

Use the definition of the derivative to show that:

1.
2.

$$\frac{d}{dx}x^2 = 2x$$

$$\frac{d}{dx}3x + 2 = 3$$

3.

$$\frac{d}{dx}x^n = nx^{n-1}$$

Derivative of the exponential

Ok now let's see if we can figure out $\frac{d}{dx}2^x$. We know $\frac{d}{dx}e^x$ is exactly just e^x . Maybe 2^x is similar?

$$\frac{d}{dx}2^x = \lim_{h \to 0} \frac{2^{x+h} - 2^x}{h}$$
$$= \lim_{h \to 0} \frac{2^x \cdot 2^h - 2^x}{h}$$
$$= \lim_{h \to 0} 2^x \left(\frac{2^h - 1}{h}\right)$$
$$= 2^x \left(\lim_{h \to 0} \frac{2^h - 1}{h}\right)$$

The derivative of 2^x is 2^x times some factor that doesn't depend on x. If we run through the same process for 10^x we find that

$$\frac{d}{dx}10^x = 10^x \left(\lim_{h \to 0} \frac{10^h - 1}{h}\right)$$

And we can go ahead and do it in general for any base b:

$$\frac{d}{dx}b^x = b^x \left(\lim_{h \to 0} \frac{b^h - 1}{h}\right)$$

Problems 2/3

4. Follow the steps we took above to verify that

$$\frac{d}{dx}10^x = 10^x \left(\lim_{h \to 0} \frac{10^h - 1}{h}\right)$$

5. Follow the steps we took above to verify that

$$\frac{d}{dx}b^x = b^x \left(\lim_{h \to 0} \frac{b^h - 1}{h}\right)$$

Finding the perfect base

Now either:

- watch the 3Blue1Brown video on Youtube called "What's so special about Euler's number e?" (https://youtu.be/m2MIpDrF7Es) through the section "Deriving the key proportionality property", or
- read chapter 4.9 in the textbook.

Both walk through the steps of differentiating b^x and then exploring the leftover term $\lim_{h\to 0} \frac{b^h - 1}{h}$.

To summarize:

- 1. The derivative of the exponential function is proportional to itself: i.e. it's itself times times a constant (the leftover term).
- 2. That constant is less than 1 for b < 2 and greater than 1 for b > 3
- 3. This suggests some *special* number (e) between 2 and 3 that acts as the perfect base to the exponential function so that $\frac{d}{dx}e^x = e^x$.

Both the textbook and the video just jump to the answer, but we have the tools to figure out the number ourselves.

Problems 3/3

6. Find the Taylor series for a function f(x) which is its own derivative (i.e. find a series that's the same after you differentiate it). We did this in the previous homework, but if you can, try to work it out again!

This function is exactly e^x .

7. We know that $b^1 = b$ for any b. So to find the value of e, plug x = 1 into your series above $-f(1) = e^1 = e$. You should find something that starts with $1 + 1 + 1/2 + ... - e^{-1}$ what are the rest of the terms? (Write your answer either as a closed form sum, or with ... but showing the general *nth* term).

This is probably the purest explanation of where e comes from, and why we use it everywhere in math. And you'll see in the next two problems why you don't really need any other exponential functions.

- 8. Use the fact that $2 = e^{\ln(2)}$ to find $\frac{d}{dx}2^x$. 9. Use the fact that $b = e^{\ln(b)}$ to find $\frac{d}{dx}b^x$.

Other recommendations

If you want to see the more classic derivation of e that comes from compounding interest, watch the Numberphile Youtube video called "e (Euler's Number)".

(https://www.youtube.com/watch?v=AuA2EAgAegE)

This is about the definition of e as

$$\lim_{n \to \infty} (1 + 1/n)^n$$

and you'll see why this is the same as what we just found (though I find the final bit a lot less satisfying than this way of doing it).

The Wikipedia page for "e (mathematical constant)" is also interesting, if a little overwhelming!