
Advanced Homework 4 - Imaginary Numbers

Suggested Due Date: May 22nd

Figure 1: xkcd - “e to the pi times i”

This assignment introduces “imaginary” numbers like
√

−7, and “complex” numbers like
3 + 2

√
−1. It will cover:

• the algebra of complex numbers, and how to think about them,
• the connection between complex numbers and rotation, and finally
• euler’s equation eix = cos(x) + i sin(x).

To start, watch the video by Veritasium on Youtube “How Imaginary Numbers Were
Invented” (https://youtu.be/cUzklzVXJwo)

Imaginary numbers
Let’s start with some definitions.
√

−1 is i, and for any b, b
√

−1 = bi is called “imaginary”. If you have a number like
√

−9
or

√
−7 you want to separate out the i – so the first would be

√
−9 =

√
9
√

−1 = 3i and
the second we would just write

√
7i.
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Complex numbers are the sums of imaginary and non-imaginary (“real”) numbers, often
written in the form a+bi - where a is the real component and b is the imaginary component.

The next step is to take this notion of “components” even futher and think of complex
numbers as numbers in a two-dimensional plane. The real components lie along the regular
number line with positive numbers to the right and negative numbers, to the left, but now
the imaginary components extend this picture into two dimensions along a perpendicular
axis.

Figure 2: This is the number 4 + 3i in the complex plane as a vector. The x-direction
component is a (so 4) and the y direction component is b (3). A complex number with
negative b is also possible, and then the vector would be pointing down.

Algebra of complex numbers works about the exact same as regular algebra; you just
have to occasionally recall that i =

√
−1 so i2 =

√
−12 = −1. You can always simplify a

complex expression into a + bi form.

For example:

(1 + 2i) ∗ (2 − i) = 1(2 − i) + 2i(2 − i)
= 2 − i + 4i − 2i2

= 2 + 3i − 2(−1)
= 2 + 2 + 3i

= 4 + 3i

Before negative numbers were understood at all, subtraction still existed. But there was a
time when an expression like 2 − 6 was meaningless (literally: people didn’t know what to
do with the idea and would avoid writing it). Negative numbers came along and extended
non-negative numbers to make the number system more general and capable.

Similarly, imaginary numbers extend the non-imaginary numbers and end up being useful
and powerful in their own right.
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Problems

1. Simplify the following into a + bi form and draw them in the complex plane:

a.
√

−9 + 2
b. (2 + i) − (1 + 3i)
c.

√
−4(3 + 4i)

d. (1 + 2i)2

e. (1 + 2i)3

Complex numbers as rotation
As you might have started to notice in the last two problems, multiplying by the same
complex number repeatedly starts to turn the result counterclockwise in the complex
plane. Let’s look at this a little more closely.

Consider what happens when you multiply a number repeatedly by i:

1 ∗ i = i

1 ∗ i ∗ i = −1

1 ∗ i ∗ i ∗ i = −i

1 ∗ i ∗ i ∗ i ∗ i = 1

If you plot each number 1, i, −1, and −i in the complex plane, you’ll see something
interesting: multiplying by i rotates by 90 degrees: 1 points to the right along the x/real
axis, i points straight up along the imaginary axis, -1 points left, and −i points straight
down. And this isn’t unique to starting with the number 1; any complex number is rotated
the same way (see problems 2 and 3).

This suggests another useful way of describing a complex number. Instead of a + bi, we
can describe a complex number’s vector in the plane by two pieces of information: its
length (

√
a2 + b2) and its angle (technically tan−1 of b/a but we won’t have to use that

at all here).

We can always get back to a = bi form from an angle and a length: a = l cos(θ) and
b = l sin(θ); or l cos(θ) + il sin(θ). This is an important point that we’ll come back to.

Let’s describe a few numbers by their length and angle:

• i has length 1, and angle of 1/4 turn1 (or 90 degrees).
• 2 + 2i has length

√
22 + 22 =

√
8 = 2

√
2 and angle 1/8 turn (or 45 degrees).

• −3 has length 3, and angle 1/2 turn or 180 degrees.

Problems

2. Draw (1 + 2i) in the complex plane. Find (1 + 2i) ∗ i, and draw this in the imaginary
plane. Do the same for (1 + 2i) ∗ i ∗ i, (1 + 2i) ∗ i ∗ i ∗ i, etc. until you arrive back to
(1 + 2i).

1Here “turn” means full rotation around the circle; or 2π in radians.
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Figure 3: Here’s the same complex number (4 + 3i) as we saw in Figure 2, but here we
see its length r, and its angle θ. It’s still in the same place in the complex plane, we’re
just measuring it differently.

3. Use the general a+bi and multiply by i four times to show that any complex number
times i4 is rotated back to where it started.

4. Try multiplying complex numbers by 1√
2 (1 + i). What does this do?

(i.e. pick a number and draw it in the complex plane. multiply it by 1√
2 (1 + i) and draw it

again - what happened to it? What happens if you multiply by 1√
2 (1 + i) again?)

5. What does multiplying complex numbers by 1 + i do? Describe the effect this has
on the direction and the length of the vector. (You may have to pick a number and
multiply it by 1 + i a few times to see the pattern.)

Euler’s equation
You may have spotted this pattern too if we have two complex numbers n1 and n2 then
their product is as long (in the complex plane) as their lengths multiplied together and
has for its angle their angles added together.

As it turns out, this is a clue of how complex angles are related to exponentiation (where
multiplying xaxb = xa+b). We’ll see that we can directly relate exponentiation, imaginary
numbers and rotation in one equation.

Problems

6. Derive Euler’s equation eix = cos(x) + i sin(x).

a) Recall or work out the Taylor series for ex

b) Replace x by (kx) to find the Taylor series for ekx (k is a constant).

c) Recall or work out the Taylor series for cos(x) and sin(x).

d) Multiply the Taylor series for sin(x) by i to find the series for i sin(x)
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e) Find the Taylor series for eix by substituting k = i and simplifying using
i2 = −1, i3 = −i, i4 = 1, etc.

f) Finally, show that eix = cos(x) + i sin(x).

Using Euler’s equation
This is a remarkable result. It relates exponetiation to rotation, and allows us to write any
complex number with length r and angle θ as reiθ; which makes the rule for multiplying
complex numbers algebraically clear:

r1eiθ1 ∗ r2eiθ2 = r1r2ei(theta1+θ2)

It also leads directly to the famous:

eiπ = cos(π) + i sin(π) = −1

and

ei2π = cos(2π) + i sin(2π) = 1

One way to think about it is the following: Multiplying by i rotates by 90 degrees in the
complex plane. ex takes a multiplication by x and applies it smoothly and continuously
(think of the compound interest definition of e). So if we combine these effects and consider
1 ∗ ei2π, we’re taking the vector 1 and smoothly rotating it 90 degrees from its current
position in exactly such a way that it starts to draw a circle; and we’re doing this until its
traveled 2π distance – the circumference of a circle with radius 1.
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