Advanced Homework 5 - Wrapping Up

Due Date: June 1st

Here we are, at the final advanced homework! We'll keep it brief and just run through a review, a couple applications, and end with a feedback form.

Review

1. Find the Taylor series for:
a. $\cos (x)$
b. $\sin (x)$
c. e^{x}
d. $e^{i x}$

Notice how $e^{i x}=\cos (x)+i \sin (x)$ follows from the Taylor series you just derived.
2. Use Euler's equation $\left(e^{i x}=\cos (x)+i \sin (x)\right)$ to find:
a. $e^{i \pi}$
b. $e^{i \pi / 2}$
c. $e^{i 2 \pi}$

Cosine and sine as exponentials

Use Euler's equation and the facts that $\cos (x)$ is even $(\cos (-x)=\cos (x))$ and $\sin (x)$ is odd $(\sin (-x)=-\sin (x))$ to show that:
3. $\cos (x)=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)$
4. $\sin (x)=\frac{1}{2}\left(e^{i x}-e^{-i x}\right)$

Expand $e^{i x}$ and $e^{-i x}$ on the right side of the equation into cosines and sines, apply odd/evenness, and simplify.

Deriving trig identities

You can derive pretty much all the trigonometric identities using $e^{i x}=\cos (x)+i \sin (x)^{1}$.
For example, show:

[^0]5. $\cos ^{2}(x)=\frac{1}{2} \cos (2 x)+\frac{1}{2}$
6. $\sin ^{2}(x)=\frac{1}{2} \cos (2 x)-\frac{1}{2}$

Squaring an exponential function multiplies its argument by two $\left(\left(e^{x}\right)^{2}=e^{2 x}\right)$. This is not generally true of any other functions, but you can see how it's kind of true of $\cos (x)$ and $\sin (x)$ because they're essentially complex exponential functions.

Differential equations

$\frac{d^{2}}{d t^{2}} y=-y$ describes the motion of a pendulum swinging back and forth, or a mass on the end of a spring bouncing back and forth. The first time you see this in a physics class you learn that the solutions are $C_{1} \sin (t)$ or $C_{2} \cos (t)$.
7. Show that $\frac{d^{2}}{d t^{2}} y=-y$ is also solved by either $y=C_{1} e^{i t}$ or $y=C_{2} e^{-i t}$.

To do this, compare the second derivative of $C e^{i t}$ to $C e^{i t}$; remember that $i^{2}=-1$.
Complex exponentials show up in systems in nature that oscillate: pendulums, springs, waves on the water or in the air, and are most prominent in quantum mechanics in wave-particle duality.

Feedback on the advanced homework

8. Finally, please fill out a brief survey to let me know what you thought of the advanced homework! I've never tried to do anything like this before, but I appreciate you giving it a shot and I hope you found it rewarding and worth the effort.
https://forms.gle/kGZg26jotjqsRz19A

[^0]: ${ }^{1}$ You'll ocassionally also need the pythagorean theorem: $\sin ^{2}(x)+\cos ^{2}(x)=1$. Knowing how to derive all of these identities frees you from the need to ever memorize them, and can feel very satisfying and demystifying.

